# Replay Trajectories There are two control modes for replay. The `physics` mode replays the physics actions and the `states` mode replays the states, so the `physics` mode has greater possibilities to fail across different simulators, but the `states` mode is bound to succeed across different simulators. ## Physics replay ```bash python metasim/scripts/replay_demo.py --sim=isaaclab --task=CloseBox --num_envs 4 ``` task could also be: - `PickCube` - `StackCube` - `CloseBox` - `BasketballInHoop` ## States replay ```bash python metasim/scripts/replay_demo.py --sim=isaaclab --task=CloseBox --num_envs 4 --object-states ``` task could also be: - `CloseBox` - `BasketballInHoop` ## Varifies commands ### Libero e.g. ```bash python metasim/scripts/replay_demo.py --sim=isaaclab --task=LiberoPickButter ``` Simulator: - `isaaclab` - `mujoco` Task: - `LiberoPickAlphabetSoup` - `LiberoPickBbqSauce` - `LiberoPickChocolatePudding` - `LiberoPickCreamCheese` - `LiberoPickMilk` - `LiberoPickOrangeJuice` - `LiberoPickSaladDressing` - `LiberoPickTomatoSauce` ### Humanoid e.g. ```bash python metasim/scripts/replay_demo.py --sim=isaaclab --num_envs=1 --robot=h1 --task=Stand --object-states ``` ```bash python metasim/scripts/replay_demo.py --sim=mujoco --num_envs=1 --robot=h1 --task=Stand --object-states ``` Simulator: - `isaaclab` - `mujoco` Task: - `Stand` - `Walk` - `Run` Note: - `MuJoCo` replay supports only one environment at a time, aka `num_envs` should be 1 (but training supports multiple environments).